

For Week Ending

 September 4, 1971U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE / PUBLIC health SERVICE health services and mental health administration DATE OF RELEASE: SEPTEMBER 10, 1971 - ATLANTA, GEORGIA 30333

EPIDEMIOLOGIC NOTES AND REPORTS SALMONELLA THOMPSON - Maine

On Aug. 7, 1971, 33 persons attended a christening in Kittery Point, Maine. Lunch was served between 12 and I p.m., and within 2 days, 17 of those who ate the meal became ill with gastroenteritis. The mean incubation period was 29 hours. Typical symptoms included diarrhea, abdominal pain, fever, headache, and myalgia. These symptoms lasted for 1-7 days, with a mean duration of 4 days. Three families sought medical attention. Cultures of stool specimens from 14 persons were positive for Salmonella thompson.

Questionnaires including food histories were completed by all 33 persons (Table 1). Sixteen of 21 (76.0 percent) persons who ate chicken salad became ill, whereas only one of 12 (8.0 percent) who did not eat this food were similarly affected ($\mathrm{p}<.001$).

Ingredients of the chicken salad included homegrown lettuce and celery, mayonnaise, and three chickens, all pur-

CONTENTS Epidemiologic Notes and Reports	
Salmonella thompson - Maine	311
Human Venezuelan Equine Encephalitis -	
Rio Grande Valley . 315	
Botulism from Home-Canned Peppers - Pennsylvania	315
Follow-Up on Venezuelan Equine Encephalitis - Texas	317
Salmonellosis - California	322
International Notes	
Poliomyelitis in 1970 - Worldwide	312
Changes in Vaccination Certificate Requirements	
for International Travel	316

chased at a local supermarket. On August 5, the chickens were gutted on a marble slab in the kitchen and boiled for 1 hour. They were then placed in a refrigerator. The next day, they were deboned and cut into small pieces which were returned to the refrigerator. Approximately 30 minutes before the meal was served on August 7, all ingredients were mixed
(Continued on page 312)

TABLE I. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
(Cumulative totals include revised and delayed reparts through previous weeks)

TABLE II. NOTIFIABLE DISEASES OF LOW FREQUENCY

	Cum.		Cum.
Anthrax:	2	Psittacosis: N.C.-1, Pa. 1	25
Botulism:	9	Rabies in Man:	1
Leprosy: Calif. 1 , Mich.-1, Tex.-1	93	Rubella congenital syndrome:	40
Leptospirosis:	24	Trichinosis: Ohio-1	51
Plague:	1	Typhus, murine: Tex.-1	17

SALMONELLA THOMPSON - (Continued from front page)

Table 1
Food Specific Attack Rates of 33 Persons
Kittery Point, Maine - Aug. 7, 1971

Food Items	Ate				Did Not Eat			
	III	$\begin{gathered} \text { Not } \\ \text { Ill } \end{gathered}$	Total	Attack Rate (Percent)	III	Not III	Total	$\begin{array}{\|c\|} \hline \text { Attack } \\ \text { Rate } \\ \text { (Percent) } \\ \hline \end{array}$
Chicken salad	16	5	21	76	1	11	12	8
Seafood	12	9	21	57	5	7	12	41
Jello salad	8	8	16	50	9	8	17	53
Rum salad	12	9	21	60	4	6	10	40
Fruit juice punch	7	6	13	53	10	10	20	50
Water	6	8	14	43	11	8	19	58
Ice cubes	13	15	28	46	4	1	5	80
Milk	1	2	3	33	16	14	30	53
Cake	10	14	24	42	7	2	9	78
Corn	13	13	26	50	4	3	7	57
Bread	11	6	17	65	6	10	16	37
Butter	11	11	22	50	6	5	11	55

and served on lettuce leaves. There were no ingredients or food samples left for laboratory analysis. Environmental cultures of the cutting board, marble slab, refrigerator shelf, and knife used to cut the chicken were all negative for salmonellae. There was no evident error in food handling or medical history to suggest recent salmonellosis in the single food handler.
(Reported by James R. Hughes, M.D., private physician, Norwich, Vermont; Dean Fisher, M.D., Commissioner of Health and Welfare, Department of Health and Welfare, State House, Augusta, Maine; and three EIS Officers.)

Editorial Note

The food specific attack rates in this outbreak clearly implicate the chicken salad as the vehicle of infection. Fifty percent of all non-human isolates of S. thompson reported to CDC in 1970 were obtained from chickens. Boiling the chicken for 1 hour should have been sufficient to kill all salmonellae. Recontamination presumably occurred after it was boiled, though no specific food handling error was documented.

INTERNATIONAL NOTES POLIOMYELITIS IN 1970* - Worldwide

Poliomyelitis is of international importance, and outbreaks of this disease in its paralytic form, together with other selected communicable diseases, are subject to notification through the World Health Organization (WHO) on a worldwide basis. For the world as a whole, close to 7,800 cases were reported for 1970, a considerable decline compared to the average number of cases reported annually for the period 1966-1969. However, these global figures reflect on greatly varying situations in the six regions discussed.

This report is based on notifications of the occurrence of poliomyelitis received by WHO through weekly, monthly, or annual summaries submitted by health administrations. It must be borne in mind, however, that reporting both on the national as well as the international level is frequently incomplete. Furthermore, for 1969 and 1970 the data are in many instances provisional, including only a portion of the indicated calendar year. Consequently, this report is intended only to give approximate trends in recent years based on the best available information at the time of writing (but excluding special surveys and other scientific investigations beyond the scope of this summary).

In the African Region, the total number of cases for 1970 is unusually low, but this is largely because half the countries listed have either not reported or submitted incomplete data (Table 2). In 18 of the 30 countries listed in this continent, the average annual number of cases in 1961-1965 increased, compared with 1951-1955. Between 1961-1965 and 1966-1969, the average annual number of cases increased substantially in 15 of these countries. A continuous decline over the entire period 1951-1969 is noticed in four countries, but only in Angola is the data sufficiently complete to conclude that there has been a real decrease in the incidence of the disease.

Cameroon, Ghana, Mozambique, and Nigeria registered substantial increases in 1970 over the 1969 total. In each of these countries, except Cameroon, the 1970 provisional totals also exceeded the average annual number of cases for 19661969.

For the period 1951-1969, the average annual number of cases for the 30 countries has been slowly but steadily rising. This to some extent results from improved reporting practices by health administrations, but for the larger part it undoubtedly reflects a steadily increasing incidence of the disease.

In the American Region, a considerable increase in the number of reported cases for 1970 was noted, compared with previous years (Table 3). Of the 26 countries with data available for comparison between 1969 and 1970, 10 showed an increase in the annual number of notified cases, and for one (Bolivia) the 1970 total was higher than for the period 19511969. Local outbreaks were recorded from at least four countries: Bolivia, Paraguay, Colombia, and Argentina. Each of these outbreaks was sufficiently large to justify mass poliomyelitis vaccination programs. In Colombia, the predominant polio virus serotype recovered from laboratory-examined cases was type 1, whereas in Argentina it was type 3. In each of the outbreaks, the cases occurred chiefly in children under the age of 4 years.

Of particular significance has been the decrease of polio in recent years in Canada, Cuba, Dominican Republic, Jamaica, Puerto Rico, Trinidad and Tobago, United States of America, and Uruguay, which has brought the disease under effective control.

The slight rise in the annual number of cases between 1969 and 1970 in the United States should be noted. The increase, though small, is being carefully watched by the U.S.

Health Administration. Attention has been drawn to the fact that there has been a steady decline in the proportion of children completely immunized against polio from 1964 to 1971. Pockets of susceptible children are known to be developing in many of the larger inner-city areas. Also significant is the report that two-thirds of the cases from the United States were from Texas, which borders on Mexico, and that several of these cases were epidemiologically associated with travel across this border.

The combined data from the American Region indicates that in most countries the poliomyelitis situation is still unstable, and the disease is not yet under effective control.

In the Eastern Mediterranean Region, only Iraq, Israel, Jordan, and Lebanon reported complete data. These countries showed a decline in the number of cases recorded in 1970, compared to 1969. This trend is particularly noticeable for Lebanon, which reported a substantial number of cases between 1961 and 1969.

In the European Region, 10 countries out of 22 reporting for 1970 had no cases, and an additional five countries notified three cases or less. A total of 1,077 cases were reported from this Region in 1970. Of the countries for which provisional data is available for 1969 (25 countries) and 1970
(23 countries), only France, Portugal, Yugoslavia, and Turkey registered increases in reported cases in 1970. However, in France, Portugal, and Yugoslavia the changes reflect the expected variations in reporting practices or occurrence of the disease.

In the U.S.S.R. in 1958, 22,054 poliomyelitis cases were registered. There were for the individual years 1965 to 1969 only $300,290,140,120$, and 190 cases, respectively.

Poliomyelitis is being well controlled in Europe by systematic use of polio virus vaccines in most countries. The live vaccines are predominantly used, but in Scandinavia, where killed vaccine is used, the decrease in cases of polio is as significant and stable as in other European countries.

In the South-East Asian Region, the overall epidemiologic situation in 1970 is obscured by the absence of data from such populous countries as India and Indonesia. In fact, with only Ceylon reporting for 1969 and 1970, no conclusions can be drawn on the basis of officially submitted data. Throughout most of this Region, the disease remains typical infantile paralysis with over 80 percent of the patients under 3 years of age. In Thailand, an analysis of age distribution of cases admitted to children's hospitals between 1960 and 1966
(Continued on page 314)

Table 2
Poliomyelitis in the African Region
Average Annual Number of Cases in 1951-1955, 1961-1965, and 1966-1969
and Annual Number of Cases in 1966 through 1970

Country	Average Annual Number of Cases			Number of Cases				
	1951-1955	1961-1965	1966-1969	1966	1967	1968	1969	1970
Angola	314	123	10	27	8	5	0	3
Botswana	4	7	8*	8	7			
Cameroon	15	29	59	10	81	112	31	46
Chad	0	5	21	34	12	6	30	13
Congo, Dem. Rep.	815	398	594	377	437	522	1,039	584
Dahomey	4	25	75	84	58	103	55	,
Gabon	7	12	46	83	21	32	47	+
Ghana		36	8	7	5	10	8	98
Ivory Coast	2	43	139	57	124	272	101	69
Kenya	204	335	429	831	169	290	424	71
Lesotho	5	.	22*	44	19	3
Madagascar	9	20	37	22	31	59	34	+
Malawi	13	58	. \cdot	.	248	\ldots	\cdots	
Mali	19	96	397	81	420	412	673	283
Mauritius	80	1	3	5	6	0	0	0
Mozambique	39	39	34	38	46	9	41	59
Niger	0	10	63	16	32	39	164	35
Nigeria	4	218	105	113	84	151	72	183
People's Rep. of the Congo	78	94	296	45	354	136	648	305
Portuguese Guinea	4	6	27	67	30	5	6	2
Reunion	7	6	8	26	5	1	1	0
Senegal	90	99	84	23	120	82	109	$+$
South Africa	610	210	416	431	67	423	743	+
Southern Rhodesia	127	99	141	109	77	331	48	
Swaziland	3	2	5	0	0	14	7	24
Togo	13	81	29	30	25	31	31	. .
Uganda	113	103	25	21	13	33	34	5
United Republic of Tanzania	112	263	243	465	112	247	146	55
Upper Volta	15	56	95*	125	63	96	\cdots	\cdots
Zambia	39	111	297*	227	434	. .	230	$+$
	tal Number	Cases		3,406	3,108	3,424	4,722	1,835

[^0]
POLIOMYELITIS - (Continued from page 31.3)

suggested a slight upward age shift coinciding with a definite increase in the total number of cases.

Data for the Western Pacific Region are shown in Table 4. Australia, Japan, New Zealand, and Singapore present a very favorable epidemiologic situation. In New Zealand only one case of poliomyelitis was reported in 1970, the only case in the last 5 years. Australia had two cases in 1970, and a total of only 10 cases between 1966 and 1969.

Approximately twice the expected number of cases was observed in the Greater Manila area of the Philippines in May 1970. However, the cases were widely distributed geographically, and a localized outbreak was not reported. Only one country officially reported an outbreak of paralytic polio to WHO in 1970: The Australian Territory of Papua and New Guinea, where 44 cases, with one death, occurred in May and June. Polio virus type 1 was isolated from one patient.

The data for 1970 show no marked variations from previous trends. In Europe, North America, Australia, New Zealand, and a few other countries including the U.S.S.R., the disease has fallen to insignificant proportions. The same trend is observed in a group of countries in Asia and in Central and South America where adequate vaccination programs have been implemented. Throughout much of Africa and Asia, however, a definite increase in the number of cases of
polio was observed. In most countries in Central and South America, the polio situation can be characterized as unstable. There is a slight decrease in morbidity, but the fluctuation in the yearly reported number of cases and the appearance of scattered outbreaks are enough to make the situation disquieting. It can be assumed that further changes in this part of the world depend greatly on efforts to organize vaccination programs. Polio virus type 1 is still responsible for the majority of cases in those countries with endemic disease or frequent outbreaks. On the other hand, in countries where vaccine has been used extensively, an equal distribution of the three polio virus serotypes is often found from the reported or suspected cases.

Tropical and sub-tropical countries with a rising level of community and personal hygiene may expect increasing numbers of paralytic poliomyelitis cases. Large outbreaks, such as those occurring in the temperate countries before polio vaccines were available, should be anticipated. These outbreaks may be averted in part, or even completely, by planning now for the implementation of nation-wide vaccination programs.

[^1]Table 3
Poliomyelitis in the American Region Average Annual Number of Cases in 1951-1955, 1961-1965, and 1966-1969 and Annual Number of Cases in 1966 through 1970

Country	Average Annual Number of Cases			Number of Cases				
	1951-1955	1961-1965	1966-1969	1966	1967	1968	1969	1970
Argentina	1,119	810	221	377	80	168	258	242
Bolivia	4	12	11	14	4	6	20	99
British Honduras	2	0	1	1	0	0	4	0
Canada	3,924	84	2	3	2	0	2	1
Chile	477	355	92	141	79	63	83	190
Colombia	103	447	381	489	529	261	245	788
Costa Rica	241	25	31	10	7	3	105	22
Cuba	179	78	0	0	0	0	0	0
Dominican Rep.	4	93	35	17	61	30	32	9
Ecuador	43	124	376	148	796	52	506	162
El Salvador	49	59	71	38	143	63	38	61
Guatemala	103	156	157	118	241	146	124	108
Guyana	3	99	2	0	1	7	0	+
Haiti		15	6*	5	8	.	4	3
Honduras		78	54	38	79	62	37	20
Jamaica	168	33	4	6	7	0	1	6
Mexico	1,365	518	797	1,024	636	850	679	1,848
Nicaragua	81	77	159	15	461	7	154	9
Panama	37	27	22*	4	55	6	. .	12
Paraguay	58	38	65	14	63	70	113	122
Peru	107	591	187	169	207	270	103	174
Puerto Rico	146	5	1	2	0	0	0	0
Trinidad and Tobago	43	7	4	1	3	1	9	3
United States of America	37,864	573	56	113	41	53	18	30
Uruguay	163	27	16	29	22	6	6	5
Venezuela	286	285	237	199	121	567	61	115
Total Number of Cases				2,975	3,646	2,691	2,602	4,029

. Data not available

+ Incomplete data
* Covers less than the 4 -year period

Table 4
Poliomyelitis in the Western Pacific Region
Average Annual Number of Cases in 1951-1955, 1961-1965, and 1966-1969
and Annual Number of Cases in 1966 through 1970

Country	Average Annual Number of Cases			Number of Cases				
	1951-1955	1961-1965	1966-1969	1966	1967	1968	1969	1970
Australia	2,187	151	3	1	1	4	4	2
Cambodia	29	85	43	11	13	128	21	+
Hong Kong	34	155	17	32	5	15	16	27
Japan	2,414	603	24	33	26	20	16	11
Korea, Rep. of		1,073	228	153	198	367	194	+
Laos	1	60	59	86	0	143	8	16
Macau	2	9	5	5	2	7	7	32
Malaysia	106	178	115	124	40	265	30	65
New Zealand	413	44	0	0	0	0	0	1
Philippines	221	447	511*	499	466	568	+	+
Singapore	55	39	4	10	3	4	0	0
Taiwan	\ldots	510	169	392	53	168	64	+
Vietnam, Rep. of	54	258	315	137	245	131	746	303
Total Number of Cases				1,483	1,052	1,820	1,106	457

. . Data not available

+ Incomplete data
* Covers less than the 4-year period

EPIDEMIOLOGIC NOTES AND REPORTS

HUMAN VENEZUELAN EQUINE ENCEPHALITIS - Rio Grande Valley

On June 23, 1971, a 43-year-old sanitarian with the U.S. Public Health Service in Ft. Collins, Colorado, was sent to Brownsville, Texas, to assist in the studies of the Venezuelan equine encephalitis (VEE) epidemic then occurring only in Mexico. For the next 9 days, he worked in Texas doing mosquito larvae surveys and was occasionally bitten by mosquitoes. On July 3, he went to Mexico and helped collect more than 60,000 mosquitoes; he received several more mosquito bites at this time. Subsequently, more than 100 mosquito pools collected were shown to be infected with VEE virus. On July 3, he also helped separate serum from clotted blood which had been collected from people in Mexico. Some of these blood specimens were found to be positive for VEE virus.

On July 6, the patient had onset of a severe, bilateral, frontal headache, fever with occasional chills, diffuse myalgia, and general malaise. In his return to Ft. Collins, he vomited twice and arrived with a temperature of $103.6^{\circ} \mathrm{F}$. The next day, he also experienced a moderately severe sore throat. A physical examination at that time showed only a low-grade fever and an erythematous throat. There was no exudate or cervical adenopathy. The patient denied any respiratory or gastrointestinal complaints other than the sore throat and the
two episodes of vomiting. He subsequently became afebrile, but a low-grade temperature of $101^{\circ} \mathrm{F}$. recurred and persisted for 2 days. He returned to work the next week but complained of easy fatigability.

Acute blood specimens and throat washings were obtained on July 7. The throat specimen was found positive for virus in monkey-kidney, Hep-2, and Wistar 38 tissue cultures. The isolate was later identified as VEE. The serum specimen was positive for virus in duck-embryo-cell culture. This isolate was also identified as VEE using the hemagglutinationinhibition test. Serologic confirmation of VEE infection was also obtained in the convalescent sera.
(Reported by the Zoonoses Section, and the Arboviral Disease Section, Ecological Investigations Program, CDC, Ft. Collins, Colorado.)

Editorial Note

The clinical course described above is typical of human VEE illness. The majority of laboratory confirmed human VEE cases reported from the lower Rio Grande Valley of Texas have presented with sudden onset of fever and severe headache with subsequent development of myalgia and general malaise. The illness usually lasts for $2-4$ days.

BOTULISM FROM HOME-CANNED PEPPERS - Pennsylvania

On Aug. 21, 1971, a man and his wife from Philadelphia, Pennsylvania, became ill with vomiting and diarrhea. The next day, they both had difficulty swallowing and blurred or double vision. On August 23, the woman experienced respiratory distress and was taken to a local hospital. She was apneic and comatose on admission but was successfully resuscitated. Her condition continued to deteriorate, however, and she
died on August 30. Her husband, who was also admitted on August 23, had fixed, dilated pupils, markedly disconjugate lateral gaze, and inability to swallow. He was alert and had no respiratory distress or difficulty talking. Investigation of these two cases led to the discovery of a third case on August 24. This patient, a neighbor, had experienced vomiting and (Continued on page 316)

BOTULISM - (Continued from page 315)
diarrhea on August 21 , weakness and dysphagia the following day, and diplopia on August 24. Her condition and that of the man have subsequently improved.

An epidemiologic investigation by the Philadelphia Health Department revealed that the affected couple frequently ate home-canned peppers. Peppers from a newlyopened jar had been eaten at lunch and supper on August 20 by both husband and wife. Their three children did $p \cdots:$ any. The neighbor also ate these peppers at lunch on August 20; she only had two bites because they tasted bad. No one else is known to have eaten peppers from this jar.

Laboratory studies have demonstrated type B botulinum toxin in the sera of the first two patients, as well as in the
leftover peppers. The peppers contained an unusually high concentration of toxin, 12,000 mouse LD50's per gram. Toxin was also present in low titer in the neighbor's serum, though there was not enough pre-treatment serum available to determine its type.
(Reported by Bonnie Dorwart, M.D., Miles Sigler, M.D., Michael Manko, M.D., private physicians, Lankenau Hospital, Philadelphia, Pennsylvania; David G. Farris, M.D., Chief, Communicable Disease Control, Philadelphia Department of Health; W. D. Schrack, Jr., M.D., Director, Division of Communicable Diseases, Pennsylvania Department of Health; and an EIS Officer.)

INTERNATIONAL NOTES
 CHANGES IN
 VACCINATION CERTIFICATE REQUIREMENTS FOR INTERNATIONAL TRAVEL

Vaccination Certificate Requirements for International Travel was published as a Supplement to Morbidity and Mortality Weekly Report in Vol. 19, No. 21, for the week ending May 30, 1970. Since that time, some countries have modified their requirements according to the evolution of the cholera outbreak; some have also made changes in smallpox and yellow fever certificate requirements.

The Vaccination Certificate Requirements of May 30, 1970, with changes as indicated in the following list, represent the current status of requirements for all countries updated through Aug. 13, 1971.
NOTE: This supersedes the list of changes published in MMWR, Vol. 20, No. 14, week ending April 10, 1971.
(Reported by the Foreign Quarantine Program, CDC.)

Country	Vaccination Against			Country	Vaccination Against		
	Cholera	Yellow Fever	Smallpox		Cholera	Yellow Fever	Smallpox
Albania	1			Maldives	11	II	1
Algeria			I	Mali	II		
Austria	II			Malta		II	
Belgium	II			Mongolia		-	
Cameroon	II			Nepal		II	
Chad	II			*Portugal-Continental			
Congo, Brazzaville	II			territory, Funchal			
El Salvador	II			Port and airport,			
Ethiopia	1	1		Santa Maria airport	II		II
Finland	II			-Maderia and			
Gabon	II			the Azores except			
Gambia	II			Funchal port and			
Gilbraltar	II			airport, and Santa			
Greece		II		Maria airport	II	II	II
Guinea, Portuguese	II	I		Rhodesia	II		
Honduras, British		II		Seychelles	1*		
Iceland	II			Sierre Leone	II		
Indonesia		II		Surinam	II		
Iraq		II		Switzerland	II		
Ivory Coast	I*			Thailand			II
Laos		11		United Kingdom	11		
Lebanon		II		United States of America	-		
Liberia	II			Upper Volta	I*		
Luxembourg	II			Venezuela	II		
Malaysia, West		II		Zambia	II		

[^2][^3]
EPIDEMIOLOGIC NOTES AND REPORTS
 FOLLOW-UP ON VENEZUELAN EQUINE ENCEPHALITIS - Texas

Since the last report on Venezuelan equine encephalitis (VEE) (MMWR, Vol. 20, No. 34), a total of 88^{*} equine viral isolates have been reported from Texas (Table 5) (Figure 1). There have been 84 laboratory confirmed human cases of VEE reported from the following counties: Cameron and Hidalgo (68), Nueces (5), San Patricio (5), Kleberg (3), Aransas (2), and Refugio (1).
(Reported by M. S. Dickerson, M.D., Chief, Communicable Diseases Services, J. E. Peavy, M.D., Commissioner, Texas State Department of Health; Richard E. Omohundro, D.V.M., Coordinator of Regional VEE Eradication Program, U.S. Department of Agriculture; the Laboratory Division, and the Epidemiology Program, CDC.)
*This week's total is one less due to duplicate submissions of specimens from one horse which were counted twice.

Table 5
Equine Viral Isolates by Virulence and Equine Vaccination History Texas - August-September 1971

	Vaccinated	Un- vaccinated	Vaccination History Unknown	Total
Virulent	18	22	16	56
Nonvirulent Test results	23	0	0	23
not yet available	6	2	1	9
Total	47	24	17	88

*Guinea pig or weanling mice inoculation test.

Figure 1
COUNTIES WITH CONFIRMED HUMAN AND EQUINE CASES OF VENEZUELAN EQUINE ENCEPHALITIS TEXAS - JULY-SEPTEMBER 1971

TABLE III. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES
FOR WEEKS ENDED
SEPTEMBI:R f. 1971 AND SEPTEMBER 5, 1970 (35th WEEK)

AREA	ASEPTIC MENINGITIS	$\begin{aligned} & \text { BRUCEL- } \\ & \text { LOSIS } \end{aligned}$	DIPH-THERIA	ENCEPHALITIS			HEPATITIS			MALARIA	
				Primary including unsp. cases		Post Infectious	Serum	Infectious			
	1971	1971	1971	1971	1970	1971	1971	1971	1970	1971	$\begin{aligned} & \text { Cum. } \\ & 1971 \end{aligned}$
UNITED STATES......	192	7	-	38	48	1	214	1,209	1,004	43	2,141
NEW ENGLAND.	21	-	-	2	1	-	8	66	83	1	61
Maine......	-	-	-	-	-	-	-	11	7	-	4
New Hampshire........	-	-	-	-	-	-	1	5	4	-	1
Vermont..............	-	-	-	-	-	-	-	3	8	-	1
Massachusetts........	5	-	-	2	-	-	3	30	40	1	41
Rhode Island.........	16	-	-	-	1	-	3	8	7	-	6
Connecticut..........	-	-	-	-	-	-	1	9	17	-	8
MIDDLE ATLANTIC.........	27	-	-	3	12	1	109	276	194	8	215
New York City........	23	-	-	-	1	1	45	64	47	-	22
New York, Up-State...	23	-	-	1	1	1	7	60	57	5	63
New Jersey............	1	-	-	-	2	-	44	89	47	3	86
Pennsylvania.........	3	-	-	2	8	-	13	63	43	-	44
EAST NORTH CENTRAL.....	24	-	-	10	11	-	21	146	173	-	143
Ohio..................	18	-	-	6	6	-	3	37	35	-	18
Indiana...............	1	-	-	-	-	-	-	11	9	-	11
Illinois.............	2	-	-	3	5	-	4	40	46	-	41
Michigan.............	2	-	-	1	-	-	14	54	73	-	48
Wisconsin............	1	-	-	-	-	-	-	4	10	-	25
WEST NORTH CENTRAL.....	6	4	-	2	-	-	2	39	29	2	205
Minnesota............	1	-	-	-	-	-	-	7	7	-	22
Iowa..................	-	4	-	-	-	-	-	2	9	-	25
M1ssour1.............	-	-	-	-	-	-	1	6	2	-	25
North Dakota.........	-	-	-	1	-	-	-	3	-	-	2
South Dakota.........	-	-	-	-	-	-	-	8	-	-	1
Nebraska..............	-	-	-	1	-	-	-	3	3	-	12
Kansas................	5	-	-	-	-	-	1	10	8	2	118
SOUTH ATLANTIC.........	62	-	-	11	14	-	20	126	127	11	349
Delaware.............	-	-	-	-	-	-	1	1	-	-	1
Maryland..............	3	-	-	2	-	-	3	23	15	-	49
Dist. of Columbia....	-	-	-	-	-	-	-	-	1	5	4
Virginia.............	10	-	-	1	1	-	5	25	30	5	57
West Virginia........	4	-	-	-	2	-	-	12	8	-	7
North Carolina.......	2	-	-	-	-	-	7	21	14	2	120
South Carolina.......	-	---	---	---	-	---	---	---	7	---	17
Georgia.*.............	19	-	-	-	-	-	-	14	16	-	57
Florida................	24	-	-	8	11	-	4	30	36	4	37
EAST SOUTH CENTRAL.....	18	2	-	1	5	-	3	77	55	-	126
Kentucky...............	1	-	-	-	-	-	-	24	19	-	100
Tennessee............	11	1	-	1	2	-	3	39	14	-	-
Alabama..............	5	-	-	-	3	-	-	12	20	-	20
Mississippi..........	1	1	-	-	-	-	-	2	2	-	6
WEST SOUTH CENTRAL.....	16	1	-	-	1	-	6	168	33	6	455
Arkansas.............	1	1	-	-	1	-	-	29	11	-	17
Lou1siana.*...........	1	-	-	-	-	-	2	11	7	-	35
Oklahoma..............	8	-	-	-	-	-	-	11	11	1	65
Texas.................	6	-	-	-	-	-	4	117	4	5	338
MOUNTAIN.................	3	-	-	-	-	-	5	63	61	7	116
Montana...............	3	-	-	-	-	-	-	5	-	-	1
Idaho................	-	-	-	-	-	-	-	4	1	1	5
Wyoming.	-	-	-	-	-	-	-	-	1	2	3
Colorado..............	-	-	-	-	-	-	3	14	14	4	87
New Mexico............	-	-	-	-	-	-	-	6	7	-	7
Arizona.*.............	-	-	-	-	-	-	1	26	30	-	8
Utah..................	-	-	-	-	-	-	1	8	7	-	3
Nevada.	-	-	-	-	-	-	-	-	1	-	2
PACIFIC.................	15	-	-	9	4	-	40	248	249	8	471
Washington.*.........	1	-	-	1	-	-	1	30	29	-	1
Oregon................	-	-	-	3	-	-	2	25	28	-	19
California...........	14	-	-	4	4	-	35	180	187	7	399
Alaska...............	-	-	-	1	-	-	1	5	1	1	5
Hava11................	-	-	-	-	-	-	1	8	4	-	47
Puerto Rico.*..........	---	-	---	-	-	---	---	---	14	-	18
Virgin Islands..........	-	-	-	-	-	-	-	-	5	-	-

*Delayed reports: Aseptic Meningitis: La. 1, Ariz. Delete 1
Encephalitis, Primary: Ind. delete 2

Hepatitis, Serum: La. delete 1
Hepatitis, Infectious: N.J. delete 3, Ga. 16, Ariz. 1,
Wash. 23, P.R. 15

TABLE III. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES

FOR WEEKS ENDED

SHPTIAMER f. 1971 AND SEPTEMBER 5, 1970 (35h WEEK) - CONTINLLED

AREA	MEASLES (Rubeola)			MENINGOCOCCAL INFECTIONS, TOTAL			MUMPS		POLIOMYELITIS		
		Cumulative			Cumulative				Total	Paralytic	
	1971	1971	1970	1971	1971	1970	1971		1971	1971	$\begin{aligned} & \hline \text { Cum. } \\ & \hline .971 \end{aligned}$
INITED STATES......	945	69,407	39,365	25	1,738	1,822	427	98,677	1	-	7
NEW ENGLAND.	6	3,431	856	1	78	80	44	6,052	1	-	-
Maine.*...............	-	1,460	204	-	8	3	-	1,190	-	-	-
New Hampshire.*......	-	206	50	-	13	8	-	649	-	-	-
Vermont...............	-	116	8	-	-	7	28	369	-	-	-
Massachusetts........	-	253	392	-	30	36	7	1,460	1	-	-
Rhode Island..........		238	119	-	3	5	5	1,182	-	-	-
Connecticut..........	6	1,158	83	1	24	21	4	1,202	-	-	-
middle atlantic.	19	7,488	4,823	4	239	331	30	6,208	-	-	-
New York City........	7	3,744	865	-	51	81	25	1,719	-	-	-
New York, Up-State...	8	648	273	1	67	66	NN	NN	-	-	-
New Jersey............	1	1,189	1,700	1	54	126	-	1,666	-	-	-
Pennsylvania.........	3	1,907	1,985	2	67	58	5	2,823	-	-	-
EAST NORTH CENTRAL.....	57	15,216	9,733	1	199	204	148	40,102	-	-	-
Ohio..................	3	3,980	3,801	-	64	80	14	7,693	-	-	-
Indi ana...............	4	2,725	269	-	14	19	9	5,093	-	-	-
Illinois..............	27	2,950	3,045	1	57	44	18	4,210	-	-	-
Michigan..............	17	2,279	1,704	-	52	52	15	9,446	-	-	-
Wisconsin............	6	3,282	914	-	12	9	92	13,660	-	-	-
WEST NORTH CENTRAL.....	5	6,790	3,858	2	127	93	24	6,472	-	-	-
Minnesota.*...........	-	52	38	-	21	13	3	1,097	-	-	-
Iowa..................	1	2,239	1,142	-	9	12	8	2,927	-	-	-
Missour1..............	-	2,599	1,275	-	45	55	5	1,026	-	-	-
North Dakota.	4	235	318	1	6	3	5	327	-	-	-
South Dakota.........	-	215	93	-	5	-	1	236	-	-	-
Nebraska..............	-	64	924	-	14	5	2	93	-	-	
Kansas................	-	1,386	68	1	27	5	-	766	-	-	
SOUTH ATLANTIC..........	754	8,338	7,146	7	306	373	41	7,129	-	-	1
Delaware..............	1	38	260	-	2	3	1	168	-	-	-
Maryland..............	-	539	1,376	1	45	34	8	646	-	-	
Dist. of Columbia....	-	15	343	1	13	3	1	90	-	-	-
Virginia..............	7	1,579	1,981	-	35	40	6	955	-	-	-
West Virginia........	2	494	311	-	7	10	17	1,842	-		
North Carolina.	2	1,927	859	-	53	76	NN	NN	-	-	-
South Carolina.......		903	594	---	20	44	---	849	---	---	-
Georgia................	735	1,072	14	-	23	33	-	11	-	-	1
Florida...............	7	1,771	1,408	5	108	130	8	2,568	-	-	-
EAST SOUTH CENTRAL.....	8	8,178	1,308	3	151	134	21	7,692	-	-	-
Kentucky..............	5	3,896	754	1	39	45	4	2,323	-	-	-
Tennessee.............	-	1,017	374	2	61	58	17	4,355	-	-	-
Alabama...............	2	1,853	92	-	28	21	-	880	-	-	-
Mississippi..........	1	1,412	88	-	23	10	-	134	-	-	-
WEST SOUTH CENTRAL.....	44	12,381	7,516	1	146	247	37	7,996	-	-	3
Arkansas..............	-	777	30	-	5	22	1	89	-	-	-
Louisiana.............	1	1,670	99	-	51	62	-	134	-	-	-
Oklahoma.	3	750	449	$\overline{-}$	7	20	-	180 7	-	-	-
Texas.................	43	9,184	6,938	1	83	143	36	7,593	-	-	3
mountain.	25	3,211	1,512	-	54	37	19	3,965	-	-	1
Montana..............	1	924	61	-	6	1	3	391	-	-	-
Idaho..................	-	271	37	-	10	6	-	120	-	-	-
Wyoming.	-	85	11	-	2	2	-	274	-	-	-
Colorado..............	-	826	182	-	7	12	9	1,301	-	-	-
New Mexico............	17	358	198	-	4	1	-	630	-	-	-
Arizona...............	7	411	967	-	8	13	7	1,093	-	-	-
Utah. Nevada.	-	329 7	35 21	-	14 3	2	-	156 -	-	-	$\overline{1}$
PaCIFIC.................	27	4,374	2,613	6	438	323	63	13,061	-	-	2
Washington.*..........	14	1,023	524	-	24	43	5	5,243	-	-	1
Oregon.................	-	370	228	1	32	25	9	1,311	-	-	1
California............	10	2,551	1,541	5	374	253	35	5,575	-	-	-
Alaska................	10	2, 54	137	-	3	-	,	5, 78	_	-	-
Hawa11................	3	376	183	-	8.	2	14	854	-	-	-
Puerto Rico............ Virgin Islands........	---	467 17	879 6	--	8	5	---	942 48	-."	--	-

TABLE III. CASES OF SPECIFIED NOTIFIABLE DISEASES: UNITED STATES

FOR WEEKS ENDED

AREA	RUBELLA		tetanus		tularemia		TYPHOID FEVER		TYPHUS FEVER TICK-BORNE (Rky. Mt. Spotted)		RABIES IN ANIMALS	
	1971	$\begin{aligned} & \text { Cum. }_{1971} \end{aligned}$	1971	$\begin{aligned} & \text { Cum } \\ & 1971 \end{aligned}$	1971	$\begin{aligned} & \hline \text { Cum. } \\ & 1971 \\ & \hline \end{aligned}$	1971	$\begin{aligned} & \text { Cum } \\ & 1971 \end{aligned}$	1971	$\begin{aligned} & \text { Cum: } \\ & 1971 \end{aligned}$	1971	$\begin{aligned} & \text { Cum. } \\ & 1971 \\ & \hline \end{aligned}$
UNITED STATES.....	213	38,141	1	69	8	118	7	206	15	321	56	2,852
NEW ENGLAND.	3	1,702	-	4	-	-	1	12	-	2	2	180
Maine*.	-	258	-	-	-	-	-	2	-	-	1	164
New Hampshire......	-	46	-	1	-	-	-	-	-	-	-	1
Vermont.	-	94	-	-	-	-	$\bar{\square}$	$\overline{7}$	-	-	-	11
Massachusetts.......	1	820	-	1	-	-	1	7	-	-	1	4
Rhode Island........	-	96	-	-	-	-	-	-	-	2	-	-
Connecticut.........	2	388	-	2	-	-	-	3	-	-	-	-
MIDDLE ATLANTIC.......	19	2,498	-	6	-	-	2	34	-	29	3	129
New York City.......	13	535	-	5	-	-	2	11	-	1	-	112
New York, Up-State..	2	397	-	1	-	-	-	12	-	15	2	112
New Jersey..........	1	573	-	-	-	-	-	5	-	6	-	-
Pennsylvania........	3	993	-	-	-	-	-	6	-	7	1	17
EAST NORTH CENTRAL....	56	8,223	-	7	-	5	1	26	-	16	6	302
Ohio................	7	954	-	1	-	1	1	12	-	13	-	89
Indiana.............	12	2,000	-	1	-	-	-	4	-	-	2	62
Illinois............	4	1,246	-	3	-	1	-	6	-	3	1	56
Michigan............	16	2,597	-	2	-	1	-	4	-	-	-	39
Wisconsin...........	17	1,426	-	-	-	2	-	-	-	-	3	56
WEST NORTH CENTRAL....	6	3,169	-	5	-	17	-	2	1	5	14	768
Minnesota............	-	272	-	2	-	-	-	-	-	-	-	164
Iowa.................	1	. 663	-	1	-	-	-	-	1	1	4	178
Missour1............	5	1,349	-	2	-	13	-	2	-	2	-	110
North Dakota........	-	93	-	-	-	-	-	-	-	-	7	143
South Dakota........	-	95	-	-	-	1	-	-	-	-	2	83
Nebraska.	-	86	-	-	-	-	-	-	-	-	-	5
Kansas...............	-	611	-	-	-	3	-	-	-	2	1	85
SOUTH ATLANTIC........	14	3,013	1	17	1	18	-	30	7	169	8	310
Delaware............	-	46	-	-	-	-	-	1	-	2	-	-
Maryland............	1	133	-	1	-	3	-	3	3	30	-	1
Dist. of Columbia...	1	8	-	-	-	-	-	1	-	-	-	-
Virginia.............	1	207	-	2	-	8	-	3	1	24	-	62
West Virginia.......	11	592	-	-	-	-	-	3	-	3	-	104
North Carolina.......	-	45	-	1	-	4	-	3	3	87	1	5
South Carolina......	-	431	---	-	-	-	---	1	---	12	-	-
Georgia..............	-	-	$\bar{\square}$	2	1	1	-	2	-	11	5	101
Florida.............	-	1,551	1	11	-	2	-	13	-	-	2	37
EAST SOUTH CENTRAL....	15	3,208	-	9	-	10	1	26	5	52	3	266
Kentucky.	8	1,108	-	-	-	2	-	6	-	10	2	138
Tennessee...........	7	1,829	-	6	-	5	1	16	5	32	-	85
Alabama.............	-	198		2	-	2	-	4	-	5	-	41
Mississippi..........	-	73	-	1	-	1	-	-	-	5	1	2
WEST SOUTH CENTRAL....	34	4,596	-	11	2	47	-	23	2	38	8	587
Arkansas*...	-	334	-	1	2	18	-	6	-	5	1	73
Louisiana............	-	280	-	1	-	7	-	6	1	1	-	21
Oklahoma............	1	68		1	-	14	-	2	1	26	-	243
Texas...............	33	3,914	-	8	-	8	-	9	-	6	7	250
MOUNTAIN...............	10	1,888	-	2	5	19	-	7	-	10	4	53
Montana..............	-	112		-	-	1	-	-	-	3	-	-
Idaho................	-	- 39		1	-	1	-	-	-	3	-	-
Wyoming.	-	859		-	-	-	-	-	-	-	-	8
Colorado.............	5	266	-	-	-	-	-	-	-	2	-	11
New Mexico.	3	209		-	-	-	-	5	-	-	-	8
Arizona.............	2	335		1	$\overline{5}$	-	-	2	-	$\overline{1}$	1	18
Utah.................	-	54		-	5	17	-	-	-	1	3	6
Nevada...............	-	14	-	-	-	-	-	-	-	1	-	2
PACIFIC................	56	9,844	-	8	-	2	2	46	-	-	8	257
Washington.	2	1,330	-	1	-	-	-	-	-	-	-	-
Oregon...............	2	7 719		1		2	-	-	-	-	-	6
California..........	50	7,602		6	-	-	2	41	-	-	8	217
Alaska..............	-	43	-	-	-	-	-	1	-	-	-	34
Hawai1................	4	150	-	-	-	-	-	4	-	-	-	-
Puerto Rico...........	---	62	---	5	---	-	-	2	-	-	---	52
Virgin Islands........	-	-	-	-	-	-	-	-	-	-	-	-

Week No. TABLE IV. DEATHS IN 122 UNITED STATES CITIES FOR WEEK ENDED SEPTEMBIRR 4. 1971 35
(By place of occurrence and week of filing certificate. Excludes fetal deaths)

Area	All Causes		Pneumonia and Influenza All Ages	Under 1 year All Causes	Area	All Causes		Pneumonia and Inf luenza All Ages	Under 1 year Al1 Causes
	$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	65 years and over				$\begin{aligned} & \text { All } \\ & \text { Ages } \end{aligned}$	65 years and over		
NEW ENGLAND:	654	374	43	34	SOUTH ATLANTIC:	1,163	595	56	49
Boston, Mass.---------	214	118	15	11	Atlanta, Ga	129	54	8	9
Bridgeport, Conn.-----	39	28	4	-	Baltimore, Md	215	99	3	13
Cambridge, Mass.------	30	16	6	-	Charlotte, N. C.-------	61	30	1	4
Fall River, Mass.-----	26	17	-	1	Jacksonville, Fla	83	47	4	4
Hartford, Conn.-.-----	42	17	2	3	Miami, Fla.----	129	69	5	4
Lowell, Mass.---------	26	18	1	-	Norfolk, Va	52	23	9	
Lynn, Mass.-----------	15	8	1	-	Richmond, Va	86	49	7	4
New Bedford, Mass.----	24	12	2	2	Savannah, Ga	44	23	3	3
New Haven, Conn.------	48	28	1	1	St. Petersburg, Fla	70	60	4	-
Providence, R. I.-.---	60	23	5	11	Tampa, Fla.------------	53	27	1	1
Somerville, Mass.----	10	9	1	-	Washington, D. C.------	194	87	7	6
Springfield, Mass.----	36	22	4	3	Wilmington, Del.-------	47	27	4	1
Waterbury, Conn.------	27	15	-	-	Whington, Del				
Worcester, Mass.-.-.--	57	43	1	2	EAST SOUTH CENTRAL:	723	396	27	28
					Birmingham, Ala.--------	184	94	4	5
middle atlantic:	3,182	1,875	120	121	Chattanooga, Tenn.-----	61	29	5	3
Albany, N. Y.---------	42	27	1	2	Knoxville, Tenn.-------	41	25	-	-
Allentown, Pa.-.-----	16	10	3	5	Louisville, Ky..-------	115	66	9	6
Buffalo, N. Y........--	140	89	3	5	Memphis, Tenn.---------	130	77	2	6
Camden, N. J.---------	32	19	-	-	Mobile, Ala.-----------	47	24	-	3
Elizabeth, N. J.------	29	14	2	2	Montgomery, Ala. -------	33	21	3	-
Erie, Pa.------------	37	17	1	3	Nashuille, Tenn.------	112	60	4	5
Jersey City, N. J.	74	45	5	1					
Newark, N. J.---------	83	30	3	12	WEST SOUTH CENTRAL:	1,159	585	24	67
New York City, N. Y. ${ }^{\text {d }}$	1,630 33	966	63	53	Austin, Tex.-----------	44	26	2	3
Paterson, N. J.-------	33	21	2	1	Baton Rouge, La.-------	9	2	-	-
Philadelphia, Pa.-----	413	249	7	11	Corpus Christi, Tex.---	44	21	-	4
Pittsburgh, Pa.-------	255	131	16	14	Dallas, Tex.-----------	169	85	6	9
Reading, Pa.---------	44	28	-	4	El Paso, Tex	27	10	1	5
Rochester, N. Y.------	125	76	2	4	Fort Worth, Tex	95	47	4	7
Schenectady, N. Y.----	25	21	3	1	Houston, Tex.----------	247	118	1	10
Scranton, Pa.---------	35	23	2	3	Little Rock, Ark.------	65	31	2	2
Syracuse, N. Y.-------	65	40	2	3	New Orleans, La.-------	167	91	5	10
Trention, N. J.--------	43	24	1	2	Oklahoma City, Okla.---	77	48	-	6
Utica, N. Y.	20	16	2	-	San Antonio, Tex.------	127	63	3	7
Yonkers, N. Y	41	29	4	-	Shreveport, La.--------	37	16	-	4
					Tulsa, Okla.----------	51	27	-	
EAST NORTH CENTRAL:	2,379	1,305	60	101					
Akron, Ohio---...------	47	26	-		MOUNTAIN:		248		
Canton, Ohio-----------	30	21	2	1	Albuquerque, N. Mex.---	50	20	2	1
Chicago, Ill.---------	683	364	15	36	Colorado Springs, Colo.	22	15	3	1
Cincinnati, Ohio------	101	59	2	2	Denver, Colo.----------	120	64	1	8
Cleveland, Ohio------	208	105	-	11	Ogden, Utah-------------	19	12	1	1
Columbus, Ohio-------	136	73	-	7	Phoenix, Ariz.----------	98	53	2	5
Dayten, Ohio-.-.-...-.	86	43	3	2	Pueblo, Colo.----------	23	19	-	-
Detroit, Mich.--------	318	146		13	Salt Lake City, Utah---	45	26	$\overline{3}$	3
Evansville, Ind.------	36	26	2	-	Tucson, Ariz.----------	71	39	3	
Flint, Mich.-..........-	49	22	-	5					
Fort Wayne, Ind.-----	35	21	2	1	PACIFIC:	1,500	903	29	60
Gary, Ind.----------	29	22	2	-	Berkeley, Calif.--...---	26	20	1	$\bar{\square}$
Grand Rapids, Mich.---	52 143	34	6	$\overline{9}$	Fresno, Calif.---------	54	31	-	2
Indianapolis, Ind.--..	143	83	5	9	Glendale, Calif.-------	33 59	25	$\overline{1}$	$\overline{-}$
Madison, Wis.---.-----	43	21	6	5	Honolulu, Hawaii-------	59	31	1	4
Milwaukee, Wis.-------	97	67	1	-	Long Beach, Calif.-----	110	67	4	4
Peoria, Ill.---------	35	20	1	1	Los Angeles, Calif.----	432	236	9	16
Rockford, 111.--------	40	26	3	1	Oakland, Calif.--------	74	46	-	8
South Bend, Ind.------	r 57	34 55	2	1	Pasadena, Calif.-------	38	25	-	2
Toledo, Ohio-----.-.--	100	55	1	2	Portland, Oreg.--------	121	82	-	3
Youngstown, Ohio-...--	54	37	-	2	Sacramento, Calif.--------- San Diego,	58 80	36 52	1	2
WEST NORTH CENTRAL:	709	443	17	25	San Francisco, Calif.--		104	6	6
Des Moines, Iowa-----	42	27	2	2	San Jose, Calif.-------	35	21	4	-
Duluth, Minn.-------.-	29	15	1	-	Seatrle, Wash....------	126	71	3	7
Kansas City, Kans.----	29	13	-	2	Spokane, Wash.---------	43	32	-	1
Kansas City, Mo.------	95	56	3	3	Tacoma, Wash.----------	40	24	-	1
Lincoln, Nebr.--------	22	16	2	1					
Minneapolis, Minn.----	85	60	-	1	Total	11,917	6,724	388	504
Omaha, Nebr.-.-.--------	70 218	45 134	2	2			6,883	385	522
St. Louis, Mo.----------	218 69	134 46	2	7	Expected Number	12,160	6,883	385	
St. Paul, Minn.-------------			7	4	Cumulative Total (includes reported corrections	451,311	259,375	16,814	20,158
					for previous weeks)				
Las Vegas, Nev.*	9	6	-	-	*Mortality data are being collected tahle, however, for statistical reas the total, expected number, or cumu	from Las Veg ons, these dat ative total, un	Nev., for pos will be listed 15 years of d	ssible inclus only and not ta are collect	on in this cluded in d.

In June 1971. an outbreak of salmonellosis due to Salmonella berra occurred in Red Bluff, California. Approximately 200 ill persons were identified. Fifteen were hospitalized, and two elderly patients died. S. berta was isolated from 51 of 67 persons who submitted stool specimens.

Epidemiologic investigation revealed the vehicle of infection to be custard-filled pastries, particularly maple bars, processed and sold at a single bakery. The contaminated ingredient was unpasteurized, frozen turkey eggs supplied only to that bakery. S. berta was isolated from several maple bars and other pastries, and from previously unopened containers of the turkey eggs. Three bakery employees and the owner of the turkey breeding farm supplying the eggs were among those persons with stools positive for S. berta. Environmental swabs of the turkey farm, including turkey droppings and eggshell scrapings, were negative for S. berta.

The bakery was temporarily closed for thorough cleaning. disinfection, and for recommended remodeling. Subse-
quent environmental swabbing revealed no evidence of persisting S. berta surface contamination. Stool specimens negative for salmonellae are being required of all bakery workers before they return to work. The bakery will not use unpasteurized bulk eggs, and the turkey breeding farm is no lopger processing bulk eggs.
(Reported by Doreen M. Wysocki, P.H.N., John Scott, Sanitarian, Lynn E. Wolfe, Jr., M.D., Health Officer, Tehama County Health Department, California; Catherine Powers, B.A., Associate Microbiologist, Ronald Wood, Ph.D., Director, Microbial Diseases Laboratory, and S. Benson Werner, M.D., Medical Epidemiologist, Infectious Disease Element, California State Department of Public Health.)

Editorial Note

Since June 1, 1966, the California Agricultural Code has required that all egg products for human consumption be pasteurized.

The Morbidity and Mortality Weekly Report, circulation 24,600, is published by
for Disease Control, Atlanta, G David J. Sencer, M.D. Philip S. Brachman, M.D
Director, Epidemiology Program, CDC PhilipS. Brachman, M.D.
Editor, MMWR Michael B. Gregg, M.D.
The data in this report are provisional, based on weekly telegraphs to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the succeeding Friday
n addition to the established procedures for reporting morbidity and mortality nadion to current interest to health officials.
Address all correspondence to: Center for Disease Control
Attn: Editor
Morbidity and Mortality Weekly Report
Atlanta, Georgia 30333
DHEW Publication No. (HSM) 72-8017

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

PUBLIC HEALTH SERVICE

HEALTH SERVICES AND MENTAL HEALTH ADMINISTRATION
CENTER FOR DISEASE CONTROL
ATLANTA, GEORGIA 30333

OFFICIAL BUSINESS

POSTAGE AND FEES PAID U.S. DEPARTMENT OF H.E.

[^0]: . . . Data not available

 + Incomplete data
 * Covers less than the 4 -year period

[^1]: *Source: World Health Organization: Weekly Epidemiological Record, Vol. 46, No. 33

[^2]: Explanation of Symbols

 - = No requirement
 $\mathrm{I}=$ Vaccination required of arrivals from all countries.
 II = Vaccination required of arrivals from infected areas.

[^3]: *The asterisk indicates that conformity of the measure with the International Health Regulations is questionable. The World Health Organization is investigating.

